Building an Anonymization Pipeline PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Building an Anonymization Pipeline PDF full book. Access full book title Building an Anonymization Pipeline by Luk Arbuckle. Download full books in PDF and EPUB format.

Building an Anonymization Pipeline

Building an Anonymization Pipeline PDF Author: Luk Arbuckle
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053384
Category : Computers
Languages : en
Pages : 166

Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data

Building an Anonymization Pipeline

Building an Anonymization Pipeline PDF Author: Luk Arbuckle
Publisher: "O'Reilly Media, Inc."
ISBN: 1492053384
Category : Computers
Languages : en
Pages : 166

Book Description
How can you use data in a way that protects individual privacy but still provides useful and meaningful analytics? With this practical book, data architects and engineers will learn how to establish and integrate secure, repeatable anonymization processes into their data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing device and IoT data, based on collection models and use cases that address real business needs. These examples come from some of the most demanding data environments, such as healthcare, using approaches that have withstood the test of time. Create anonymization solutions diverse enough to cover a spectrum of use cases Match your solutions to the data you use, the people you share it with, and your analysis goals Build anonymization pipelines around various data collection models to cover different business needs Generate an anonymized version of original data or use an analytics platform to generate anonymized outputs Examine the ethical issues around the use of anonymized data

Building an Anonymization Pipeline

Building an Anonymization Pipeline PDF Author: Luk Arbuckle
Publisher:
ISBN: 9781492053422
Category : Anonymous persons
Languages : en
Pages : 150

Book Description
How can you use data in a way that protects individual privacy, but still ensures that data analytics will be useful and meaningful? With this practical book, data architects and engineers will learn how to implement and deploy anonymization solutions within a data collection pipeline. You'll establish and integrate secure, repeatable anonymization processes into your data flows and analytics in a sustainable manner. Luk Arbuckle and Khaled El Emam from Privacy Analytics explore end-to-end solutions for anonymizing data, based on data collection models and use cases enabled by real business needs. These examples come from some of the most demanding data environments, using approaches that have stood the test of time.

Operating AI

Operating AI PDF Author: Ulrika Jagare
Publisher: John Wiley & Sons
ISBN: 1119833213
Category : Computers
Languages : en
Pages : 237

Book Description
A holistic and real-world approach to operationalizing artificial intelligence in your company In Operating AI, Director of Technology and Architecture at Ericsson AB, Ulrika Jägare, delivers an eye-opening new discussion of how to introduce your organization to artificial intelligence by balancing data engineering, model development, and AI operations. You'll learn the importance of embracing an AI operational mindset to successfully operate AI and lead AI initiatives through the entire lifecycle, including key areas such as; data mesh, data fabric, aspects of security, data privacy, data rights and IPR related to data and AI models. In the book, you’ll also discover: How to reduce the risk of entering bias in our artificial intelligence solutions and how to approach explainable AI (XAI) The importance of efficient and reproduceable data pipelines, including how to manage your company's data An operational perspective on the development of AI models using the MLOps (Machine Learning Operations) approach, including how to deploy, run and monitor models and ML pipelines in production using CI/CD/CT techniques, that generates value in the real world Key competences and toolsets in AI development, deployment and operations What to consider when operating different types of AI business models With a strong emphasis on deployment and operations of trustworthy and reliable AI solutions that operate well in the real world—and not just the lab—Operating AI is a must-read for business leaders looking for ways to operationalize an AI business model that actually makes money, from the concept phase to running in a live production environment.

Practical Synthetic Data Generation

Practical Synthetic Data Generation PDF Author: Khaled El Emam
Publisher: O'Reilly Media
ISBN: 9781492072744
Category : Computers
Languages : en
Pages : 175

Book Description
One challenge with big data and other secondary analytics initiatives is getting access to large and diverse data. Secondary analytics allow insights beyond the questions that data initially collected can answer. This practical book introduces techniques for generating synthetic data-fake data generated from real data-that can provide secondary analytics to help you understand customer behaviors, develop new products, or generate new revenue. CTOs, CIOs, and directors of analytics will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps of synthetic data generation from real data sets. Business leaders will examine how synthetic data can help accelerate time to a solution.