Metric Spaces of Non-Positive Curvature PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Metric Spaces of Non-Positive Curvature PDF full book. Access full book title Metric Spaces of Non-Positive Curvature by Martin R. Bridson. Download full books in PDF and EPUB format.

Metric Spaces of Non-Positive Curvature

Metric Spaces of Non-Positive Curvature PDF Author: Martin R. Bridson
Publisher: Springer Science & Business Media
ISBN: 9783540643241
Category : Mathematics
Languages : en
Pages : 680

Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

Metric Spaces of Non-Positive Curvature

Metric Spaces of Non-Positive Curvature PDF Author: Martin R. Bridson
Publisher: Springer Science & Business Media
ISBN: 9783540643241
Category : Mathematics
Languages : en
Pages : 680

Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

Metric Spaces of Non-Positive Curvature

Metric Spaces of Non-Positive Curvature PDF Author: Martin R. Bridson
Publisher: Springer Science & Business Media
ISBN: 3662124947
Category : Mathematics
Languages : en
Pages : 643

Book Description
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.

Metric Spaces, Convexity, and Non-positive Curvature

Metric Spaces, Convexity, and Non-positive Curvature PDF Author: Athanase Papadopoulos
Publisher: Erich Schmidt Verlag GmbH & Co. KG
ISBN: 9783037191323
Category : Mathematics
Languages : en
Pages : 328

Book Description
This book is about metric spaces of nonpositive curvature in the sense of Busemann, that is, metric spaces whose distance function satisfies a convexity condition. The book also contains a systematic introduction to metric geometry, as well as a detailed presentation of some facets of convexity theory that are useful in the study of nonpositive curvature. The concepts and the techniques are illustrated by many examples, in particular from hyperbolic geometry, Hilbert geometry and Teichmuller theory. For the second edition, some corrections and a few additions have been made, and the bibliography has been updated.

Nonpositive Curvature: Geometric and Analytic Aspects

Nonpositive Curvature: Geometric and Analytic Aspects PDF Author: Jürgen Jost
Publisher: Springer Science & Business Media
ISBN: 9783764357368
Category : Mathematics
Languages : en
Pages : 124

Book Description
The present book contains the lecture notes from a "Nachdiplomvorlesung", a topics course adressed to Ph. D. students, at the ETH ZUrich during the winter term 95/96. Consequently, these notes are arranged according to the requirements of organizing the material for oral exposition, and the level of difficulty and the exposition were adjusted to the audience in Zurich. The aim of the course was to introduce some geometric and analytic concepts that have been found useful in advancing our understanding of spaces of nonpos itive curvature. In particular in recent years, it has been realized that often it is useful for a systematic understanding not to restrict the attention to Riemannian manifolds only, but to consider more general classes of metric spaces of generalized nonpositive curvature. The basic idea is to isolate a property that on one hand can be formulated solely in terms of the distance function and on the other hand is characteristic of nonpositive sectional curvature on a Riemannian manifold, and then to take this property as an axiom for defining a metric space of nonposi tive curvature. Such constructions have been put forward by Wald, Alexandrov, Busemann, and others, and they will be systematically explored in Chapter 2. Our focus and treatment will often be different from the existing literature. In the first Chapter, we consider several classes of examples of Riemannian manifolds of nonpositive curvature, and we explain how conditions about nonpos itivity or negativity of curvature can be exploited in various geometric contexts.

Variational Problems in Riemannian Geometry

Variational Problems in Riemannian Geometry PDF Author: Paul Baird
Publisher: Birkhäuser
ISBN: 3034879687
Category : Mathematics
Languages : en
Pages : 150

Book Description
This book collects invited contributions by specialists in the domain of elliptic partial differential equations and geometric flows. There are introductory survey articles as well as papers presenting the latest research results. Among the topics covered are blow-up theory for second order elliptic equations; bubbling phenomena in the harmonic map heat flow; applications of scans and fractional power integrands; heat flow for the p-energy functional; Ricci flow and evolution by curvature of networks of curves in the plane.

Fixed Point Theory in Distance Spaces

Fixed Point Theory in Distance Spaces PDF Author: William Kirk
Publisher: Springer
ISBN: 3319109278
Category : Mathematics
Languages : en
Pages : 173

Book Description
This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a significant component of this book. This book is divided into three parts. Part I contains some aspects of the purely metric theory, especially Caristi’s theorem and a few of its many extensions. There is also a discussion of nonexpansive mappings, viewed in the context of logical foundations. Part I also contains certain results in hyperconvex metric spaces and ultrametric spaces. Part II treats fixed point theory in classes of spaces which, in addition to having a metric structure, also have geometric structure. These specifically include the geodesic spaces, length spaces and CAT(0) spaces. Part III focuses on distance spaces that are not necessarily metric. These include certain distance spaces which lie strictly between the class of semimetric spaces and the class of metric spaces, in that they satisfy relaxed versions of the triangle inequality, as well as other spaces whose distance properties do not fully satisfy the metric axioms.

Dictionary of Distances

Dictionary of Distances PDF Author: Michel-Marie Deza
Publisher: Elsevier
ISBN: 0080465544
Category : Mathematics
Languages : en
Pages : 412

Book Description
This book comes out of need and urgency (expressed especially in areas of Information Retrieval with respect to Image, Audio, Internet and Biology) to have a working tool to compare data. The book will provide powerful resource for all researchers using Mathematics as well as for mathematicians themselves. In the time when over-specialization and terminology fences isolate researchers, this Dictionary try to be "centripedal" and "oikoumeni", providing some access and altitude of vision but without taking the route of scientific vulgarisation. This attempted balance is the main philosophy of this Dictionary which defined its structure and style. Key features: - Unicity: it is the first book treating the basic notion of Distance in whole generality. - Interdisciplinarity: this Dictionary is larger in scope than majority of thematic dictionaries. - Encyclopedicity: while an Encyclopedia of Distances seems now too difficult to produce, this book (by its scope, short introductions and organization) provides the main material for it and for future tutorials on some parts of this material. - Applicability: the distances, as well as distance-related notions and paradigms, are provided in ready-to-use fashion. - Worthiness: the need and urgency for such dictionary was great in several huge areas, esp. Information Retrieval, Image Analysis, Speech Recognition and Biology. - Accessibility: the definitions are easy to locate by subject or, in Index, by alphabetic order; the introductions and definitions are reader-friendly and maximally independent one from another; still the text is structured, in the 3D HTML style, by hyperlink-like boldfaced references to similar definitions. * Covers a large range of subjects in pure and applied mathematics * Designed to be easily applied--the distances and distance-related notions and paradigms are ready to use * Helps users quickly locate definitions by subject or in alphabetical order; stand-alone entries include references to other entries and sources for further investigation

Groups St Andrews 1997 in Bath: Volume 1

Groups St Andrews 1997 in Bath: Volume 1 PDF Author: C. M. Campbell
Publisher: Cambridge University Press
ISBN: 9780521655880
Category : Mathematics
Languages : en
Pages : 396

Book Description
This two-volume book contains selected papers from the international conference "Groups: St. Andrews 1997 in Bath". The articles are arranged in roughly alphabetical order and cover a wide spectrum of modern group theory. There are articles based on lecture courses given by five main speakers together with refereed survey and research articles contributed by other conference participants. Proceedings of earlier "Groups: St. Andrews" conferences have had a major impact on the development of group theory and these volumes should be equally important.

Convex Analysis and Optimization in Hadamard Spaces

Convex Analysis and Optimization in Hadamard Spaces PDF Author: Miroslav Bacak
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110361620
Category : Mathematics
Languages : en
Pages : 193

Book Description
In the past two decades, convex analysis and optimization have been developed in Hadamard spaces. This book represents a first attempt to give a systematic account on the subject. Hadamard spaces are complete geodesic spaces of nonpositive curvature. They include Hilbert spaces, Hadamard manifolds, Euclidean buildings and many other important spaces. While the role of Hadamard spaces in geometry and geometric group theory has been studied for a long time, first analytical results appeared as late as in the 1990s. Remarkably, it turns out that Hadamard spaces are appropriate for the theory of convex sets and convex functions outside of linear spaces. Since convexity underpins a large number of results in the geometry of Hadamard spaces, we believe that its systematic study is of substantial interest. Optimization methods then address various computational issues and provide us with approximation algorithms which may be useful in sciences and engineering. We present a detailed description of such an application to computational phylogenetics. The book is primarily aimed at both graduate students and researchers in analysis and optimization, but it is accessible to advanced undergraduate students as well.

Free Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations

Free Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations PDF Author: Kelei Wang
Publisher: Springer Science & Business Media
ISBN: 3642336965
Category : Mathematics
Languages : en
Pages : 112

Book Description
This thesis is devoted to the study of the asymptotic behavior of singularly perturbed partial differential equations and some related free boundary problems arising from these two problems. We study the free boundary problems in the singulary limit and give some characterizations, and use this to study the dynamical behavior of competing species when the competition is strong. These results have many applications in physics and biology.